\qquad

Objectives: SWBAT. . .
... review solution basics.
... explain how intermolecular forces affect solubility.

SOLUTION:

SOLVENT:
SㅁㄴㅣTE[S]:
AqUEOUS SOLUTIONS:
NOT ALL SOLUTIONS ARE AQUEOUS:

Mixture	Solution State oi Matter	Solvent State of Matter	Solute State of Matter
Air			
Antifreeze mixture			
Brass			
Carbonated water			
Sugar water			

THE BASICS OF SOLUBILITY:

UNDERST ANDING SOLUBILITY COMES DOWN TO ONE, SIMPLE PHRASE:
Traditional solvents tend to be either...

- Polar covalent solvents have an unequal charge distribution...
ex)

(+

Solvation:

You don't need to be an ion to be dissolved in a polar solvent! ex)

Which are the water molecules?
Which are the sugar molecules?

- Since non-polar covalent solvents have an equal charge distribution they...
ex) Dry cleaners use non-polar solvents to remove stains.

DETERGENTS WORK BECALISE THEY HAVE...

...a non-polar part which will interact...
... and a polar part which will interact...
www. newark.rutgers.edu

NIW THE CUTTING EDEE STUFF... ICNIC LIDUIDS:

Normally ions pack closely into solid, crystalline structures due to...

What if bulky, asymmetrical cations were combined with smaller, evenly shaped anions?

- The ions don't pack well and remain disorganized. In other words, \qquad
- Unlike typical organic solvents, tend not to give off fumes due to \qquad
- Potentially less hazardous and more convenient than current solvents.
- Can easily extract chemicals from the ionic liquids, allowing...

IONIC LIQUIDS HAVE THE POTENTIAL TO REDEFINE THE ENTIRE FIELD OF CHEMISTRY.

"Ideas are the factors that lift civilization. They create revolutions. There is more dynamite in an idea than in many bombs." ~Bishop Vincent

HONORS CHEMISTRY SOLUTIONS INTRO

See if you can come up with new examples for each of the following. Do not reuse the ones from the video!

Mixture	Solution State 0f Matter	Solvent State 0f Matter	Solute State 0f Matter
	Gas	Gas	Gas
	Liquid	Liquid	Liquid
	Solid	Solid	Solid
	Liquid	Liquid	Gas
	Liquid	Liquid	Solid

What is necessary for a detergent to work?

Venn Diagram Time! Compare and contrast these different types of solvents. Feel free to add drawings to help.

[^0]\qquad
Learning Activities: SWBAT. . .
...describe solution strength through both qualitative and quantitative means.

IUALITATIVE DESCRIPTIDNS DF SOLUTICN STRENGTH:

CONCENTRATED:

DILLITE:
UNSATURATED:
SATURATED:
SUPERSATURATED:

- Usually due to changes in temperature

As a general rule of thumb,

The solubility of solids tends to \qquad with increasing temperature.

The solubility of gases tends to \qquad with increasing temperatures.

QUANTITATIVE DESCRIPTIDNS OF SRLUTIDN STRENGTH:

 MLLARITY [M] =- Molarity is the most common unit of concentration used.

Try this... 50.0 grams of sodium hydroxide is dissolved in a 0.500 liter volumetric flask. What is the molarity of the solution?

MASS PEREENT:

Mass Percent $=\frac{\text { mass of solute }}{\text { mass of solution }} \times 100 \%=\frac{\text { mass of }}{\text { mass of }+ \text { mass of }} \times 100 \%$

Try this... 50.0 grams of sodium hydroxide is dissolved in a 0.500 liters of water. What is the mass percent of NaOH ? Density of water $=1.0 \mathrm{~g} / \mathrm{mL}$

MOLALITY [m]:

- Since volume can change at different temperatures,
- Since molality uses mass, not volume, it's independent of temp. changes (8)
- Even with the advantages of molality, many chemists prefer the ease of using molarity for conc.

Try this... 50.0 grams of sodium hydroxide is dissolved in a 0.500 liters of water. What is the molality of NaOH given that the density of water at that temperature is $1.0 \mathrm{~g} / \mathrm{mL}$?

"Don't go around saying the world owes you a living. The world owes you nothing. It was here first." ~Mark Twain (1835 ~ 1910)

HONORS CHEMISTRY SOLUTIONS UNITS

Treat these like test problems! List all relevant information, write out the blank equation, manipulate for the appropriate variables, show all work, show all units, and watch you sig figs!

Mr. Anticole wants to make 2.5 liters of 0.125 M strontium nitrate. How many grams of strontium nitrate does he have to measure out?

55 cmoles of sodium hypochlorite is dissolved in 1.00 liters of water (density $1.00 \mathrm{~g} / \mathrm{mL}$). What is the mass percent of sodium hypochlorite in that bleach solution?

Determine the molalities of the solutions in the two previous problems.
"The true measure of a man is how he treats someone who can do him absolutely no good." -Samuel Johnson
\qquad

Learning Activities: SWBAT. . .

...solve dilution problems and calculate new concentrations.
IILUTIDN: A method of lowering the concentration of a solution by adding water.

- The key to understanding dilution is that you ARE NOT changing the amount of solute.
- The moles if solute remain \qquad .
- What will change is \qquad hence the concentration will also change.

Can set up the equation: $\quad \mathbf{M}_{\mathbf{i}} \mathbf{V}_{\mathbf{i}}=\mathbf{M}_{\mathbf{f}} \mathbf{V}_{\mathbf{f}}$
Where $\mathbf{M}_{\mathbf{i}}=$
$\mathrm{V}_{\mathrm{i}}=$
$M_{f}=$
$\mathbf{V}_{\mathrm{f}}=$

Think about the units...

That should make sense...

Try this... 1000.0 mL of water is added to 300.0 mL of $5.00 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$. Determine the new conc.
"There are more of them than us." ~ Herb Caen

HONORS CHEMISTRY DILUTION

Treat these like exam problems. List relevant information \& show all relevant work.

How much 0.50 M HCl can be made by diluting 250 mL of 10.0 M HCl ?

If you add water to 100.0 mL of a 0.15 M NaOH solution until the final volume is 150.0 mL , what will molarity of the diluted solution be?

How much water would you need to add 500 mL of a 2.4 M KCl solution to make a 1.0 M solution?

[^1]\qquad

Learning Activities: SWBAT. .

...apply stoichiometric principles to solutions.

MANY IMPIRTANT CHEMIEAL REACTIDNS TAKE PLAEE IN ADUEDUS ENVIRDNMENTS.

- Stoichiometry is needed to predict mass and mole amounts between reactants and products.
- Often multiple ways to approach a problem. Be sure to have a game plan before starting.
- Take the time to plan and organize your work. No credit for work that cannot be followed!

HOW TD RECDENIZE SDLUTIDN STDICHIDMETRY PROBLEMS:

- Involve a complete chemical reaction in a solution (i.e. both products and reactants.)
- You'll be given info. about one chemical and be expected to determine information about another.
- This will require that you use mole-mole ratios at some point.

THESE PRDBLEMS DFTEN REDUIRE:

- A bALANCED EQUATION TO DETERMINE...
- Concentrations and volumes to determine...
- MOLAR MASSES TO DETERMINE...
- Precipitation rules to determine...
- NET IONIC EQUATIONS TO DETERMINE...

Watch out for limiting reactant problems. Be sure final answer is in the desired unit!

Try this... Mixing solutions of sodium sulfate and barium nitrate will produce an insoluble barium compound. What volume (in mL) of 0.25 M sodium sulfate would be needed to precipitate out all the barium found in 12.5 mL of 0.15 M barium nitrate?

Try this... 55.0 mL of 1.5 Mcalcium chloride solution is added to 125 mL of .950 M silver nitrate solution. How many milligrams of precipitate will form?

ANOTHER PERSPECTIVE

"A smooth sea never made a skilled mariner." ~ English Proverb

HONORS CHEMISTRY
 SOLUTIONS STOICHIOMETRY

Treat these like exam problems. List relevant information \& show all relevant work.

How many milliliters of 0.75 M sodium hydroxide are needed to neutralize 275 mL of 0.50 M sulfuric acid?

When 53 mL of 0.75 M cobalt (III) nitrate are added to a sodium sulfate solution, how many grams of cobalt (III) sulfate can be precipitated?

What mass of solid aluminum hydroxide is produced when 125 mg of aluminum nitrate is added to 200.0 mL of 0.100 M potassium hydroxide?

How many grams of precipitate will you get when 150 . mL of 0.500 M silver nitrate is added to 100 . mL of 0.400 M potassium chromate?
...incorporate acids and bases into solution stoichiometry.

NEUTRALIZATIDN REAETIDNS

Strong acids complete dissociate in water. Ex)
Strong bases also completely dissociate in water. Ex)
If a strong acid is mixed with a strong base, the net ionic equation will be:
When enough acid or base is added to react completely with the other, the solution is said to be...

Try this... How many milliliters of $.555 \mathrm{M} \mathrm{NaOH}(a q)$ are needed to neutralize 9.51 mL of 2.00 M HCl ?

TITRATIDNS: An analytical method used to determine the concentration of an unknown sample.

- You react the unknown solution with a solution of known concentration
- The data gained can be used to calculate \qquad .
- Uses an indicator to let you know when the equivalence point has been reached.
- Indicator:
- Equivalence point:

FDR EXAMPLE... TITRATING A STRDNG AID WITH A STRZNG BASE:

- At the beginning there is an overwhelming amount of acid \therefore
- As you add base, some neutralization occurs, but...
- Even when there is only a little acid left...
- At the equivalence point there's just enough base to...
- Add a little more base and...
- Around the equivalence point...
- We use an indicator that changes color around...
- ex) Phenolphthalein:
- Different equivalence points call for...

WHY IS THE EDUIVALENEE PDINT SD IMPDRTANT?

- At that point, we know that \qquad equal \qquad .
- We can then solve for the concentration of the unknown using a familiar equation:

$$
M_{a} V_{a}=M_{b} V_{b}
$$

Where $\mathbf{M}_{\mathbf{a}}=$
$\mathrm{V}_{\mathrm{a}}=$
$M_{b}=$
$\mathrm{V}_{\mathrm{b}}=$

- Note, this equation can be tweaked to handle polyprotic acids. (Can you figure out how?)

Try this... Use the equation about to determine how many milliliters of $.555 \mathrm{M} \mathrm{NaOH}($ aq $)$ are needed to neutralize 9.51 mL of 2.00 M HCl ?
"You've got to do your own growing, no matter how tall your grandfather was." Irish Proverb

Learning Goals: SWBAT. . .

...expand their definition of what an acid and a base are.
...identify conjugate acid-base pairs.
...differentiate between strong and weak acids.

In the 1880s, SVANTE ARRHENILS came up with the definitions of acids and bases we've been using:

Acid:

Base:

In the 1920's لIDHANNES BRDNSTED + THDNAS LDWRY defined acids and bases in a new way:
Acid:
Base:
This was a more inclusive definition since it could account for...

When an acid releases a proton into water, it joins with water molecule to form a \qquad

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

- If an acid releases only one hydrogen ion then it is called \qquad ex)
- If it can release more than one than it is called \qquad ex)
ex) If it can release two protons, it would be called \qquad ex)
(Obviously, polyprotic acids will require \qquad base to completely neutralize.)
- OXYACIDS:
ex)
- Organic acids:

ex)

USING THE BRONSTED-LOWRY DEFINITIONS, AN ACID DISSOCIATION CAN BE REPRESENTED WITH:

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

CONJIUGATE AEID-BASE PAIR:

What are the two pairs?

Try this... Write the conjugate acid for NH_{3}. Write the conjugate base for HClO_{4}.

Nothing is stopping the conjugate base (hydronium ion) from reacting with the conjugate acid:

$$
\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \rightarrow \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

- This is often called the \qquad reaction (as opposed to the forward reaction)
This sets up a competition between the forward and reverse reactions (a.k.a.

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

If water wants the proton more than the conjugate base, then..

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

- The acid completely dissociates/ionizes, so it would be considered a \qquad ex)

If the conjugate base wants the proton more than water, then...

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

- There will be little dissociation/ionization, so it would be considered a \qquad ex)

StRONG ACIDS haVE \qquad CONJUGATE BASES (THAT'S WHY THE FORWARD REACTION DOMINATES). WEAK ACIDS HAVE \qquad CONJUGATE BASES (THAT'S WHY THE REVERSE REACTION DOMINATES).

Note: bases can also be strong or weak, depending on how much conjugate acid forms:

$$
\text { ex) } \mathbf{N H}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longleftrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \text { Ammonia is a }
$$

\qquad base.
ex) $\mathbf{N a O H}(\mathbf{a q}) \xrightarrow{\mathbf{H}_{2} \mathrm{O}} \mathrm{Na+(aq)}+\mathrm{OH}^{-}(\mathrm{aq})$ Sodium hydroxide is a \qquad base.

IID YIU KNDW... "Gilbert Newton Lewis (of Lewis Dot fame) had an even broader broader definition of acids and bases as electron pair acceptors and donors, respectively. Gilbert Newton Lewis was probably the greatest and most influential influential of American chemists. Lewis believed that a chemistry department should should simultaneously teach science and advance it, always remembering that the most important emphasis must be placed on fundamental principles rather than its technical applications. During his career he published over 150 papers. Lewis' book,
 Valence and the Structure of Atoms and Molecules, is a classic, one of the greatest greatest contributions to modern bonding theory. Although Lewis never received the Nobel Prize, it is commonly felt that his work more than merited this award." (http: //www.woodrow.org)

"I have attempted to give you a glimpse...of what there may be of soul in chemistry. But it may have been in vain. Perchance the chemist is already damned and the guardian the blackest. But if the chemist has lost his soul, he will not have lost his courage and as he descends into the inferno, sees the rows of glowing furnaces and sniffs the homey fumes of brimstone, he will call out-: 'Asmodeus, hand me a test-tube.'"-G.N. Lewis

HONORS CHEMISTRY ACIDS AND BASES REVISITED

Compare on contrast the different kinds of acids and bases... (research might be needed).

Identify the acid, base, conjugate acid and conjugate base in each of the following:

$$
\begin{aligned}
& \mathrm{HNO}_{3}(\mathrm{ag})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{3^{-}}(\mathrm{aq}) \\
& \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}(\mathrm{aq}) \rightarrow \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

"The meek shall inherit the earth? Well... I don't think so. If by meek you mean friendly and introverted, okay maybe, but ifby meek you mean unwilling to take a chance, then never. If I was a betting man and I had to wager on who I thought would inherit the earth, my money would be on the curious." - Jim coudal,
\qquad

Learning Activities: SWBAT. . .

...define amphoteric.
...apply the ion-product constant to water.
...calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{+}\right], \mathrm{pH}$ and pOH .

WATER IS AMPHDTERIL:

ex) $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

- Water will auto-ionize into \qquad and \qquad ions, but only to a very small degree.
- At pH $7,25^{\circ} \mathrm{C}$, the concentrations are $\ldots\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$ [brackets indicate concentration]

The product of the concentrations of water is a constant known as $\mathbf{K}_{\mathbf{w}}$
$\mathrm{K}_{\mathrm{w}}=$ ion-product constant $=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} @ 25^{\circ} \mathrm{C}$ (units are dropped)
This means that as one concentration increases, the other must...

- In neutral solutions,

Note: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$often written as just $\left[\mathrm{H}^{+}\right]$

- In acidic solutions,
- In basic solutions,

But no matter what, the product of these two concentrations must equal $\mathbf{K}_{\mathbf{w}}$!
Try this... given one concentration, calculate the other. Then determine if acidic, basic, or neutral.
$\left[\mathrm{H}^{+}\right]=2.1 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=8.5 \times 10^{-3} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{~m}$

THE ALIDITY DF SZLUTIUNS ARE MEASURED IN A LIGARITHMIC SEALE.

THE CONCEPT OF A LOGARITHM =

ex) 100	$=$	\therefore logarithm of 100 is	$\therefore \log (100)=$
ex) $1000 \quad$	$=$	\therefore logarithm of 1000 is	$\therefore \log (1000)=$
ex) 0.1	$=$	\therefore logarithm of .1 is	$\therefore \log (0.1)=$

- The log of a number like 457 will be in between...
- A change of one unit in a log scale represents a \qquad change in the numerical value.
- This allows us to see...
- Small changes in a log scale mean...
- Since the concentrations of $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$can be small values, a log scale makes sense.

Since the \log of numbers less than one are negative, $\left[\mathrm{H}^{+}\right]$is measured as...

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \text {and } \mathrm{pOH}=-\log \left[\mathrm{OH}^{+}\right]
$$

Since strong acids and bases completely dissociate...

$$
\text { ex) } \quad \begin{aligned}
& 2.0 \mathrm{M} \mathrm{HCl}^{2}=M \mathrm{H}^{+} \\
& 2.0 \mathrm{MH}_{2} \mathrm{SO}_{4}=\quad M \mathrm{H}^{+}
\end{aligned}
$$

Logs have a special rule for significant figures. The number of decimal places for a log equals the sig.figs of the original number! ie. $1.0 \times 10^{-1} \mathrm{M} \mathrm{H}^{+}=$

Try this... determine the pH and pOH of the three prior examples.

$$
\text { Notice: } \mathrm{pH}+\mathrm{pOH}=
$$

D|D YOU KNDW... "...In solution at $25^{\circ} \mathrm{C}$, a pH of 7 indicates neutrality. Pure water, when exposed to the atmosphere, however, will take in carbon dioxide, some of which reacts with water to form carbonic acid, thereby lowering the pH to about 5.7.
...Neutral pH $25^{\circ} \mathrm{C}$ at is not exactly 7. The value is consistent, however, with neutral pH being 7.00 to two significant figures, which is near enough for most people to assume that it is exactly 7 .
...The pH of water gets smaller with higher temperatures. For example, at $50^{\circ} \mathrm{C}, \mathrm{pH}$ of water is 6.55 ± 0.01. This means that a diluted solution is neutral at $50^{\circ} \mathrm{C}$ when its pH is around 6.55 and that a pH of 7.00 is basic..
...Extremely acidic or extremely basic substances may have pH less than O or greater than 14. An example is acid mine runoff, with a molar concentration of 3981 M and a pH of - 3.6.
~www.wikipedia.org

	$\mathrm{H}_{3} \mathrm{O}^{+}$	pH	
	10^{1}	-1	Concentrated HCl
	10°	0	Battery acid
	10^{-1}	1	
	10^{-2}	2	Lemon juic
-			Vinegar
-	10^{-3}	3	Soft drink Beer
	10^{-4}	4	Tomato
	10^{-5}	5	Coffee Urine
	10^{-5}	5	Rainwater
	10^{-6}	6	Milk
			Saliva
Neutral	10^{-7}	7	Pure water
	10^{-8}	8	$\begin{aligned} & \text { Blood } \\ & \text { Seawater } \end{aligned}$
	10^{-9}	9	Baking soda
	10^{-10}	10	Soap
,	10^{-11}	11	Ammonia
	10^{-12}	12	Hair remover
	10^{-13}	13	Oven cleaner
	10^{-14}	14	

From Conceptual Chemistry, Second Edition by John Suchocki. Copyright 92004 Benjamin Cummings, a division of Pearson Educatior

[^2]
HONORS CHEMISTRY
 PH

A. For each of the following, determine the missing information:

$$
\left.\begin{array}{ll}
\log (10,000)=\ldots & \log (\ldots)=-2 \\
\log (-12.6)=\ldots & \log (\ldots)=10.2 \\
\log (50,000)=\ldots & \log (\ldots \\
\log (-1.6)=\ldots & \log (\ldots
\end{array}\right)=4.69
$$

B. For each of the following, determine the missing information:

$$
\begin{array}{lll}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.43 \times 10^{-6}} & {\left[\mathrm{OH}^{-}\right]=} & \text {Acidic, basic or neutral? } \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=} & {\left[\mathrm{OH}^{-}\right]=2.13 \times 10^{-4}} & \text { Acidic, basic or neutral? } \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.9 \times 10^{-8}} & {\left[\mathrm{OH}^{-}\right]=} & \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=} & {\left[\mathrm{OH}^{-}\right]=7.5 \times 10^{-11}} & \text { Acidic, basic or neutral? } \\
\text { Acidic, basic or neutral? }
\end{array}
$$

C. Write down the equations for pH and pOH :
D. Determine the pH and pOH of each of the solutions in part B . (You can write it to the left of the hydrodium and hydroxide concentrations.)
E. Why is it harder to determine the pH of a weak acid?
"The real hero is always a heroby mistake;
he dreams ofbeing an honest coward like everybody else." - Umberto Eco

HONORS CHEMISTRY

You used 47.2 mL of .965 M sodium hydroxide to titrate 200.0 mL of hydrochloric acid of an unknown concentration.

Estimate the concentration and original pH of the acid.
Then solve for the concentration and original pH of the acid.

There are a lot more pH indicators out there besides good old phenolphthalein. Color in these pH scales to show what color they are at different pHs. (Research needed!)

Litmus

Red cabbage juice

methyl red

bromothymol blue

[^3]
[^0]: "Be a first rate version of yourself, not a second rate version of someone else." - Judy garland

[^1]: "It takes a great deal of courage to stand up to your enemies, but even more to stand up to your friends." - J. K. Rowling

[^2]: "Fear secretes acids; but love and trust are sweet juices." ~ Henry ward Beecher

[^3]: "You canknow the name of a bird in all the languages of the world, but when you're finished, you'll know absolutely nothing whatever about the bird... Solet's look at the bird and see what it's doing ~ that's what counts. I learned very early the difference between knowing the name of something and knowing something." - Richard Feynman

